

Design Process for the Advanced Photon Source Fast Orbit Feedback System Upgrade

Glenn Decker

Diagnostics Group Leader
Accelerator System Division
Advanced Photon Source
Workshop on Next-Generation
Fast Orbit Feedback Systems for
Storage Rings
May 9, 2013

What is and was necessarily influences what shall be.

- What is and was necessarily influences what shall be.
- What shall be supersedes what can possibly be.

- What is and was necessarily influences what shall be.
- What shall be supersedes what can possibly be.
- What can possibly be should be within grasp of what shall in fact be.

- What is and was necessarily influences what shall be.
- What shall be supersedes what can possibly be.
- What can possibly be should be within grasp of what shall in fact be.
- What now is provides enormous leverage towards what shall, or can possibly be.
 - If only we have the conviction to learn from our mistakes past, present, and future.

Design Process

- The hardware and interfaces, while challenging, will be straightforward.
- The algorithms to be run on the hardware is perhaps more challenging.
- We have a machine, soon to have a full complement of turn-by-turn bpms.
- We will use the machine we have to simulate the machine we want.
 - Based on measured beam temporal and spatial structure
 - Based on measured steering corrector response
 - Using already-familiar operational orbit correction configuration tools
- An extensive code validation phase will compare simulation with experiment.
- Only then will we start extrapolating.

What is and was - APS Beam Position Monitoring

Om Singh c. 2004

Existing APS Fast Orbit Feedback Architecture

The Hardware

Six-pole combined H/V correctors

Slow corrector with aluminum chamber

Split fast corrector with spool piece (Note xbpm in background)

Fast corrector with solid-core skew quad

G. Decker Design Process for APS Feedback

Workshop on Next-Generation Fast Orbit Feedback Systems for Storage Rings – May 9, 2013

Pickup Electrodes

1-cm dia. buttons

With 352 MHz matching networks

4-mm dia. Buttons @ IDs

Between hybrid undulator and SCU

Electronics

Feedback Crate

Front Rear

BSP-100s Every corrector gets two fibers

Monopulse Receivers

X-ray BPM Preamps

Existing Feedback Performance

Noisy BPMs

Existing Performance Cont'd

Present and Future Beam Stability

		AC rms motion 0.01-200 Hz		AC rms motion 0.01-1000 Hz		Long-term drift (One Week)	
		μ m rms	μ rad rms	μ m rms	μ rad rms	μ m rms	μ rad rms
Horizontal	Present	5.0	0.85	5.0 - 7.0*	NA	7.0	1.4
	Upgrade	3.0	0.53	6.0	1.14	5.0	1.0
Vertical	Present	1.6	0.80	3.7^{*}	NA	5.0	2.5
	Upgrade	0.42	0.22	0.84	0.44	1.0	0.5

^{*} Measurement up to 767 Hz.

Based on 5% of transverse beam dimensions up to 200 Hz and 10% up to 1 kHz.

Digression: Spatial Modes 1 - Local Bump

Local Four Bump

4 by 4 Local Bump Inverse Response Matrix

A Better Bump - 4 by 394 Response Matrix

4 by 394 Pseudo-Inverse Response Matrix

$$Y_m = R_{mn} C_n$$

$$R = U S V^{T}$$

$$C_n = R_{nm}^{-1} Y_m$$

BPMs

4 by 394 U Matrix - Eigenorbits

A case where lots of BPMS are a good thing

Spatial Modes 2 - An Eighty by Eighty Square Matrix

glennsSquareMatrix Example

...etc. repeat 40 times

glennsSquareMatrix U Matrix Eigenorbits

Thinking Locally - Sector 27 in September 2014

- Consider doing exact full-band correction on only source RF bpms using something like glennsSquareMatrix.
- Then use second much slower feedback connecting xbpms to rfbpm setpoints.
- Worry about BM beamlines later, perhaps with calibrated slow corrector bumps
- End of digression

What will it look like

Proposed Real-Time Feedback Double-Sector* Architecture (Revision 4)

22.6 vs. 1.5 kHz Access to everything Nominal 200 Hz Closed-loop BW

Double Sector Controller Architecture

Zynq Board Interfaces

Measured Response S38A:H3 to S38A:P2x Raw

Simulation

Implementation

$$(Xref - X) C(S) G(s) = X$$

$$\frac{X}{Xref} = \frac{CG}{1+CG}$$

Summary

- APS feedback design is constrained by
 - Existing hardware,
 - 5000 hour operating schedule throughout
 - Installation during three month-long shutdowns / year, 10 total
- Design process is
 - To learn from our own and other's mistakes (this workshop)
 - Comprehensive measurements on the existing accelerator
 - Simulation to refine algorithms in space and time
- First dress rehearsal summer 2014
- Operational deployment September 2014